
By Iris Lee Anshel (auth.), Paul Latiolais (eds.)
This booklet demonstrates the energetic interplay among algebraic topology, very low dimensional topology and combinatorial team concept. a few of the principles offered are nonetheless of their infancy, and it really is was hoping that the paintings the following will spur others to new and intriguing advancements. one of the concepts disussed are using obstruction teams to tell apart convinced particular sequences and several other graph theoretic concepts with purposes to the idea of groups.
Read or Download Topology and Combinatorial Group Theory: Proceedings of the Fall Foliage Topology Seminars held in New Hampshire 1986–1988 PDF
Best geometry and topology books
From Geometry to Quantum Mechanics: In Honor of Hideki Omori
This quantity consists of invited expository articles by means of recognized mathematicians in differential geometry and mathematical physics which were prepared in party of Hideki Omori's fresh retirement from Tokyo college of technological know-how and in honor of his primary contributions to those parts.
Designing fair curves and surfaces: shape quality in geometric modeling and computer-aided design
This state of the art learn of the innovations used for designing curves and surfaces for computer-aided layout purposes makes a speciality of the main that reasonable shapes are continually freed from unessential good points and are uncomplicated in layout. The authors outline equity mathematically, display how newly built curve and floor schemes warrantly equity, and help the consumer in choosing and elimination form aberrations in a floor version with no destroying the vital form features of the version.
Professor Peter Hilton is among the most sensible identified mathematicians of his new release. He has released nearly three hundred books and papers on a number of elements of topology and algebra. the current quantity is to have fun the get together of his 60th birthday. It starts off with a bibliography of his paintings, through reports of his contributions to topology and algebra.
Extra resources for Topology and Combinatorial Group Theory: Proceedings of the Fall Foliage Topology Seminars held in New Hampshire 1986–1988
Sample text
X = a2 t3 + a6 t2 + a10 t + a14 . ∂u u=0 ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✸ ❆♥② ♦t❤❡r ♣❛t❝❤ ✇❤✐❝❤ ❤❛s t❤❡ s❛♠❡ ❜♦✉♥❞❛r② ❝✉r✈❡ ❛♥❞ ❞❡r✐✈❛t✐✈❡ ♣♦❧②♥♦♠✐❛❧ ✷ ❛t ✐ts ❡❞❣❡ ✇✐❧❧ ♠❛t❝❤ t❤✐s ♣❛t❝❤ ❛t ✐ts ✸ u = 0 ❡❞❣❡❀ s✐♠✐❧❛r ❝♦♥str❛✐♥ts ❛♣♣❧② ❛t t❤❡ ♦t❤❡r ❡❞❣❡s ✳ ■♥ ❛ ❝♦♠♠♦♥ ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛ ♥❡t✇♦r❦ ♦❢ s♣❛❝❡ ❝✉r✈❡s r❡❛❞②✲ ❞❡s✐❣♥❡❞✳ ❆♥♥♦②✐♥❣❧②✱ ✐t ✇♦r❦s ♦✉t t❤❛t ❜✐❝✉❜✐❝ ♣❛t❝❤❡s ❤❛✈❡ ❥✉st ♦♥❡ t♦♦ ♠❛♥② ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ✭✐♥ ❡❛❝❤ ❞✐♠❡♥s✐♦♥✮ t♦ s✉r❢❛❝❡ s✉❝❤ ❛ ♥❡t✇♦r❦ ✇✐t❤♦✉t t❤❡ s✉♣♣❧② ♦❢ ❛❞❞✐t✐♦♥❛❧ ❞❛t❛✳ ✭❍✐❣❤❡r✲❞❡❣r❡❡ ♣❛t❝❤❡s ❤❛✈❡ ❧♦ts ♦❢ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠✱ q✉❛❞r❛t✐❝s ❞♦♥✬t ❤❛✈❡ ❡♥♦✉❣❤✳✮ ■❢ t❤❡ ♣❛t❝❤❡s ❛r❡ ❜❡✐♥❣ ❞❡t❡r♠✐♥❡❞ ❜② ❛ ❍❡r♠✐t❡ t❡❝❤✲ ♥✐q✉❡✱ ♦r ❛s ❛ ❣❡♦♠❡tr✐❝ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡ ❛❧❧♦✇❛❜❧❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✐♥t❡r♥❛❧ ♣♦✐♥ts ✐♥ ❛❞❥❛❝❡♥t ♣❛t❝❤❡s ✭♦r✖❧♦♦❦✐♥❣ ❛❤❡❛❞✖t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❡rt✐❝❡s ♦❢ ❛ ❇é③✐❡r ❝♦♥tr♦❧ ♠❡s❤✮✱ t❤❡♥ t❤❡ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ❡♠❡r❣❡ ❛s s♦✲❝❛❧❧❡❞ t✇✐st ✈❡❝t♦rs ❛t t❤❡ ♣❛t❝❤ ❝♦r♥❡rs✿ ∂ 2 Q(t, u) .
X = a2 t3 + a6 t2 + a10 t + a14 . ∂u u=0 ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✸ ❆♥② ♦t❤❡r ♣❛t❝❤ ✇❤✐❝❤ ❤❛s t❤❡ s❛♠❡ ❜♦✉♥❞❛r② ❝✉r✈❡ ❛♥❞ ❞❡r✐✈❛t✐✈❡ ♣♦❧②♥♦♠✐❛❧ ✷ ❛t ✐ts ❡❞❣❡ ✇✐❧❧ ♠❛t❝❤ t❤✐s ♣❛t❝❤ ❛t ✐ts ✸ u = 0 ❡❞❣❡❀ s✐♠✐❧❛r ❝♦♥str❛✐♥ts ❛♣♣❧② ❛t t❤❡ ♦t❤❡r ❡❞❣❡s ✳ ■♥ ❛ ❝♦♠♠♦♥ ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛ ♥❡t✇♦r❦ ♦❢ s♣❛❝❡ ❝✉r✈❡s r❡❛❞②✲ ❞❡s✐❣♥❡❞✳ ❆♥♥♦②✐♥❣❧②✱ ✐t ✇♦r❦s ♦✉t t❤❛t ❜✐❝✉❜✐❝ ♣❛t❝❤❡s ❤❛✈❡ ❥✉st ♦♥❡ t♦♦ ♠❛♥② ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ✭✐♥ ❡❛❝❤ ❞✐♠❡♥s✐♦♥✮ t♦ s✉r❢❛❝❡ s✉❝❤ ❛ ♥❡t✇♦r❦ ✇✐t❤♦✉t t❤❡ s✉♣♣❧② ♦❢ ❛❞❞✐t✐♦♥❛❧ ❞❛t❛✳ ✭❍✐❣❤❡r✲❞❡❣r❡❡ ♣❛t❝❤❡s ❤❛✈❡ ❧♦ts ♦❢ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠✱ q✉❛❞r❛t✐❝s ❞♦♥✬t ❤❛✈❡ ❡♥♦✉❣❤✳✮ ■❢ t❤❡ ♣❛t❝❤❡s ❛r❡ ❜❡✐♥❣ ❞❡t❡r♠✐♥❡❞ ❜② ❛ ❍❡r♠✐t❡ t❡❝❤✲ ♥✐q✉❡✱ ♦r ❛s ❛ ❣❡♦♠❡tr✐❝ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡ ❛❧❧♦✇❛❜❧❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✐♥t❡r♥❛❧ ♣♦✐♥ts ✐♥ ❛❞❥❛❝❡♥t ♣❛t❝❤❡s ✭♦r✖❧♦♦❦✐♥❣ ❛❤❡❛❞✖t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❡rt✐❝❡s ♦❢ ❛ ❇é③✐❡r ❝♦♥tr♦❧ ♠❡s❤✮✱ t❤❡♥ t❤❡ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ❡♠❡r❣❡ ❛s s♦✲❝❛❧❧❡❞ t✇✐st ✈❡❝t♦rs ❛t t❤❡ ♣❛t❝❤ ❝♦r♥❡rs✿ ∂ 2 Q(t, u) .
T♦ t❤❡ ❝✉r✈❡ ♦r s✉r❢❛❝❡ ❡q✉❛t✐♦♥s✳ Hermite interpolation ■♥ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ ✇❡ ❞✐✛❡r❡♥t✐❛t❡ t❤❡ ❡q✉❛t✐♦♥s ♦❢ t❤❡ ❝✉r✈❡ ♦r s✉r❢❛❝❡✱ ❛♥❞ s♦❧✈❡ s✐♠✉❧t❛♥❡♦✉s ❡q✉❛t✐♦♥s ❢♦r ❜♦t❤ ♣♦s✐t✐♦♥ ❛♥❞ t❛♥❣❡♥t ✈❛❧✉❡ ❛t ❡❛❝❤ ♦❢ t❤❡ ♣♦✐♥ts ❜❡✐♥❣ ✐♥t❡r♣♦❧❛t❡❞✳ ❚❤✉s t✇✐❝❡ ❛s ♠❛♥② ❝♦❡✣❝✐❡♥ts ❛r❡ r❡q✉✐r❡❞ ❛s ✐♥ t❤❡ ▲❛❣r❛♥❣❡ ❝❛s❡✳ ❆ ♣❛r✲ t✐❝✉❧❛r❧② ✐♠♣♦rt❛♥t ❝❛s❡ ✐s ❝♦♥str✉❝t✐♥❣ ❛ ❝✉r✈❡ ❜❡t✇❡❡♥ t✇♦ ❡♥❞ ■♥t❡r♣♦❧❛t✐♦♥ ✸✺ ✸✭✐✮✖▲❛❣r❛♥❣❡ ❛♥❞ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥ ✉s❡❞ t♦ ❝♦♥✲ str✉❝t ❛ ♣❛r❛♠❡tr✐❝ ❝✉❜✐❝ ❝✉r✈❡ s❡❣♠❡♥t✳ ♣♦✐♥ts✱ ✇✐t❤ ❦♥♦✇♥ t❛♥❣❡♥t ✈❛❧✉❡s ❛t ❡❛❝❤✳ ❚❤❛t r❡q✉✐r❡s ❛ ❝✉r✈❡ ✇✐t❤ ❢♦✉r ❝♦❡✣❝✐❡♥ts ✐♥ ❡❛❝❤ ❡q✉❛t✐♦♥✱ ✇❤✐❝❤ ❛r❡ ❝✉❜✐❝s ❀ t❤❡r❡ ✐s ❛❧s♦ ❛♥ ❡q✉✐✈❛❧❡♥t ♣❛t❝❤ ✇❤✐❝❤ r✉♥s ❜❡t✇❡❡♥ ❢♦✉r ❝♦r♥❡r ♣♦✐♥ts✱ ❛♥❞ ❤❛s ✶✻ ❝♦❡✣❝✐❡♥ts✳ ❈✉❜✐❝s ❛r❡ ❢r❡q✉❡♥t s✐❣❤t✐♥❣s ✐♥ ❝♦♠♣✉t✐♥❣ ✇✐t❤ ❣❡♦♠❡tr②✿ s❡❡ ■❧❧✉str❛t✐♦♥ ✸✭✐✮✳ The problem of parameterization ■♥t❡r♣♦❧❛t✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✱ ❞❡❝✐❞✐♥❣ ✇❤❛t t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✲ ✉❡s ❛t ❡❛❝❤ ♣♦✐♥t ✇✐❧❧ ❜❡✖t❤❡ ✐ss✉❡ ♦❢ ♣❛r❛♠❡t❡r✐③❛t✐♦♥✖✐s ❝r✉❝✐❛❧✳ ✭❚❤❛t ✐s ❛ ♣r♦❜❧❡♠ t❤❛t ❞♦❡s ♥♦t ♦❝❝✉r ✇✐t❤ ❡①♣❧✐❝✐t✱ s✐♥❣❧❡✲✈❛❧✉❡❞✱ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s✿ ❛♥❞ s♦ ✇❡ ❝❛♥ s❡❡ ✇❤② t❤❡s❡ ❛r❡ ♣r❡❢❡rr❡❞ ❢♦r ❞r❛✇✐♥❣ ❣r❛♣❤s ❛♥❞ s♦ ♦♥✳ ❆♥❞ t❡❝❤♥✐q✉❡s ❢r♦♠ ❵❣r❛♣❤✐♥❣✬ ❛♣♣❧✐❝❛✲ t✐♦♥s ✉s✉❛❧❧② ❡①♣❧♦✐t t❤✐s ❧✐♠✐t❛t✐♦♥✱ ✇❤✐❝❤ ✐s ✇❤② ✇❡ s❤♦✉❧❞ ❜❡ ✇❛r② ♦❢ tr②✐♥❣ t♦ tr❛♥s♣❧❛♥t t❤❡♠ t♦ ♠♦r❡ ❣❡♥❡r❛❧ ❣❡♦♠❡tr✐❝ ♣r♦❜❧❡♠s✳✮ ❙♦✱ t❤❡ ♣r♦❜❧❡♠ ✇✐t❤ ✐♥t❡r♣♦❧❛t✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s ✐s t❤❛t✱ ✇❤✐❧❡ t❤❡ ♣♦s✐t✐♦♥s ❛♥❞ t❛♥❣❡♥t ❞✐r❡❝t✐♦♥s ♠❛② ❜❡ ♣r♦✈✐❞❡❞✱ ✇❡ ❤❛✈❡ t♦ ❡st✐♠❛t❡ t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s t❤❛t t❤❡ ❝✉r✈❡ ❵s❤♦✉❧❞✬ ❤❛✈❡ ✇❤❡♥ ✐t ♣❛ss❡s ❡❛❝❤ ♣♦✐♥t✱ ❛♥❞ t❤❡ ♠❛❣♥✐t✉❞❡ ❛s ✇❡❧❧ ❛s ❞✐r❡❝t✐♦♥ ♦❢ ❞❡r✐✈❛✲ t✐✈❡s✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ▲❛❣r❛♥❣❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ t❤❡ s✐♠♣❧❡st ❝❤♦✐❝❡ ✐s t♦ s♣❛❝❡ ♣❛r❛♠❡tr✐❝ ✈❛❧✉❡s ❡q✉❛❧❧② ❜❡t✇❡❡♥ ♣♦✐♥t ❞❛t❛✳ ❚❤✐s ✇♦r❦s ✐❢ t❤❡ ♣♦✐♥ts ❛r❡ t❤❡♠s❡❧✈❡s q✉✐t❡ ❡✈❡♥❧② s♣❛❝❡❞❀ ♦t❤❡r✇✐s❡ s♦♠❡✲ t❤✐♥❣ ❜❡tt❡r ✐s ♥❡❡❞❡❞✳ ❙✐♥❝❡ ♣❛r❛♠❡t❡r✐③❛t✐♦♥ ✐s r❡❧❛t❡❞ t♦ ❝✉r✈❡ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✸✻ ❧❡♥❣t❤✱ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❦♥♦✇ ✇❤❛t t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡ ✇✐❧❧ ❜❡ ❜❡t✇❡❡♥ ❡❛❝❤ ❞❛t❛ ♣♦✐♥t❀ ❜✉t t❤❛t ✐s ♣✉tt✐♥❣ t❤❡ ❝❛rt ❜❡❢♦r❡ t❤❡ ❤♦rs❡✱ ❜❡❝❛✉s❡ ✇❡ ❤❛✈❡♥✬t ❣♦t t❤❡ ❝✉r✈❡ ②❡t✳ ❖♥❡ ❝♦✉❧❞ ✐♠♣❧❡♠❡♥t ❛ t❡❝❤♥✐q✉❡ ♦❢ s✉❝❝❡ss✐✈❡ r❡✜♥❡♠❡♥t✖s❡t ✉♣ ♦♥❡ ❝✉r✈❡✱ ❣❡t t❤❡ ❝✉r✈❡ ❧❡♥❣t❤s ❢r♦♠ ✐t✱ ❛♥❞ t❤✉s ♦❜t❛✐♥ ♥❡✇ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ❞❛t❛ ♣♦✐♥ts✱ ❛♥❞ r❡♣❡❛t t❤❡ ❡①❡r❝✐s❡✖❜✉t t❤✐s r✐❣♠❛r♦❧❡ ✐s ♥♦t ✉s✉❛❧❧② ❛t✲ t❡♠♣t❡❞❀ ✐t ✇♦✉❧❞ ♣r♦❜❛❜❧② ❜❡ ❞✐✣❝✉❧t ❡✈❡♥ t♦ ♣r♦✈❡ t❤❛t ✐t ✇♦✉❧❞ ❝♦♥✈❡r❣❡✳ ❚❤❡ ✉s✉❛❧ s♦❧✉t✐♦♥ ✐s ❝❤♦r❞✲❧❡♥❣t❤ ♣❛r❛♠❡t❡r✐③❛t✐♦♥✱ ✇❤❡r❡ t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ♣♦✐♥ts ❛r❡ ❜❛s❡❞ ♦♥ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ str❛✐❣❤t✲❧✐♥❡ s❡❣♠❡♥ts ❝♦♥♥❡❝t✐♥❣ t❤❡♠✳ ❚❤✐s ✐s ❛ ❣♦♦❞ ✇♦r❦❤♦rs❡✱ ❣✐✈✐♥❣ tr♦✉❜❧❡ ♦♥❧② ✇❤❡♥ t❤❡r❡ ❛r❡ ❛❜r✉♣t ❵❝♦r♥❡rs✬ ✐♠♣❧✐❡❞ ❜② t❤❡ ❞❛t❛✱ ❛♥❞ ❝❤❛♥❣❡s ♦❢ s♣❛❝✐♥❣✳ ❋✉rt❤❡r r❡✜♥❡♠❡♥ts ✐♥✈♦❧✈❡ t❛❦✐♥❣ t❤❡ ❛♥❣❧❡ ❜❡t✇❡❡♥ s✉❝❝❡ss✐✈❡ s♣❛♥s ✐♥t♦ ❛❝❝♦✉♥t ✭s❡❡ ❋❛r✐♥✬s ❜♦♦❦ ❈✉r✈❡s ❛♥❞ ❙✉r❢❛❝❡s ❢♦r ❈♦♠♣✉t❡r ❆✐❞❡❞ ●❡♦♠❡tr✐❝ ❉❡s✐❣♥ ❢♦r ♠♦r❡ ❞❡t❛✐❧✮✳ ❲✐t❤ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ s✐♠✐❧❛r ♣r♦❜❧❡♠s ♦❝❝✉r❀ ❛♥❞ ✐t ♠✉st ❜❡ r❡♠❡♠❜❡r❡❞ t❤❛t ♠❛❣♥✐t✉❞❡s ♦❢ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢♦r♠ dx dt ❡t❝✳✱ ❛r❡ r❡❧❛t❡❞ t♦ t❤❡ ❛❝t✉❛❧ s✐③❡ ♦❢ t❤❡ ❝✉r✈❡ ✐♥ t❤❡ ✉♥✐ts ♦❢ ❧❡♥❣t❤ ❜❡✐♥❣ ✉s❡❞✳ ❚❤✉s✱ ✐❢ ✇❡ s❝❛❧❡ ❛ ❝✉r✈❡ ❜② s❝❛❧✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢ ✐ts ❍❡r♠✐t❡ ❝♦❡✣❝✐❡♥ts✱ ✇❡ ♠✉st s❝❛❧❡ t❤❡ ❞❡r✐✈❛t✐✈❡s ❡①♣❧✐❝✐t❧②✳ ❚❤❛t✬s ❡❛s② ❡♥♦✉❣❤ ❢♦r ❛ s✐♠♣❧❡ s❝❛❧✐♥❣✱ ❜✉t ✇❤❛t ❛❜♦✉t ❛ s❤❡❛r tr❛♥s❢♦r♠❄ ❆❧❧ t❤❡s❡ r❡♠❛r❦s ❤❛✈❡ ❜❡❡♥ ❛❞❞r❡ss❡❞ t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ✐♥t❡r✲ ♣♦❧❛t✐♦♥✱ ❜✉t ❛❧s♦ ❛♣♣❧② t♦ ❝✉r✈❡ ✜tt✐♥❣✳ ❆❣❛✐♥✱ t❤✐s ✐s ❛ ♣r♦❝❡ss t❤❛t ✇♦r❦s ✇❡❧❧ ✇✐t❤ ❡①♣❧✐❝✐t ❣❡♦♠❡tr②✱ ❛♥❞ ❢❛✐r❧② ✇❡❧❧ ✇✐t❤ ✐♠♣❧✐❝✲ ✐ts ✭❡①❝❡♣t t❤❛t ♥♦r♠❛❧✐③❛t✐♦♥ ❝❛✉s❡s ❛ ♣r♦❜❧❡♠✮✳ ❲✐t❤ ♣❛r❛♠❡tr✐❝ ❣❡♦♠❡tr②✱ ✇❡ ❛❣❛✐♥ ❤❛✈❡ t♦ ❞❡❝✐❞❡ ✐♥ ❛❞✈❛♥❝❡ ✇❤❛t ♣❛r❛♠❡t❡r ✈❛❧✉❡ ❡❛❝❤ ♣♦✐♥t ✇✐❧❧ ❝♦rr❡s♣♦♥❞ t♦✳ ❇✉t ✐❢ t❤❡ ♣♦✐♥ts ❛r❡ ❛t ❛❧❧ ❞❡♥s❡✱ t❤✐s ✐s ❞✐✣❝✉❧t✿ ❝❤♦r❞✲❧❡♥❣t❤ ♣❛r❛♠❡t❡r✐③❛t✐♦♥ ✐s ❝❡rt❛✐♥❧② ✉s❡❧❡ss✳ ❲❡ ❝♦♥❝❧✉❞❡ t❤✐s s❡❝t✐♦♥ ✇✐t❤ ❈ ❝♦❞❡ ❢♦r ▲❛❣r❛♥❣❡ ❛♥❞ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✳ ❚❤❡ ✜rst ♣r♦❝❡❞✉r❡ ✇♦r❦s ♦✉t t❤❡ ▲❛❣r❛♥❣✐❛♥ ✐♥t❡r✲ ♣♦❧❛t✐♥❣ ❝✉❜✐❝ ♣❛r❛♠❡tr✐❝ ♣♦❧②♥♦♠✐❛❧ t❤r♦✉❣❤ ❢♦✉r ♣♦✐♥ts ✐♥ t❤r❡❡ ❞✐♠❡♥s✐♦♥s✳ ❚❤❡ ♣♦✐♥ts ✇✐❧❧ ❜❡ s✉♣♣❧✐❡❞ ✐♥ ♣①✱ ♣②✱ ❛♥❞ ♣③✳ ❚❤❡ 0✱ ❛♥❞ t❤❡ ♣❛r❛♠✲ ♣❛r❛♠❡t❡r ♦♥ t❤❡ ❝✉r✈❡ ❛t t❤❡ ✜rst ♣♦✐♥t ✇✐❧❧ ❜❡ 1❀ t❤❡ ❝♦❡✣❝✐❡♥ts ♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧ ✇✐❧❧ ❜❡ ♣♦❧②①✱ ♣♦❧②②✱ ❛♥❞ ♣♦❧②③❀ ♣♦❧②①❬✸❪ ✐s t❤❡ ❝♦❡✣❝✐❡♥t ♦❢ ❡t❡r ❛t t❤❡ ❧❛st ♣♦✐♥t r❡t✉r♥❡❞ ✐♥ ■♥t❡r♣♦❧❛t✐♦♥ t3 ✐♥ x ✸✼ ❛♥❞ s♦ ♦♥✳ ❚❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ♠✐❞❞❧❡ t✇♦ ♣♦✐♥ts ♦♥ t❤❡ ❝✉r✈❡ ✇✐❧❧ ❜❡ r❡t✉r♥❡❞ ✐♥ t✶ ❛♥❞ t✷✳ ★✐♥❝❧✉❞❡ ❁♠❛t❤✳❤❃ ★✐♥❝❧✉❞❡ ❁st❞✐♦✳❤❃ ✴✯ ❆❜s♦❧✉t❡ ✈❛❧✉❡ ♠❛❝r♦ ✯✴ ★❞❡❢✐♥❡ ❢❛❜s✭❛✮ ✭✭✭❛✮ ❁ ✵✳✵✮ ❄ ✭✲✭❛✮✮ ✿ ✭❛✮✮ ✴✯ ❆❧♠♦st ✵ ✲ ❛❞❥✉st ❢♦r ②♦✉r ❛♣♣❧✐❝❛t✐♦♥ ✯✴ ★❞❡❢✐♥❡ ❆❈❈❨ ✭✶✳✵❡✲✻✮ ✐♥t ❧❛❣r❛♥❣❡✭♣①✱♣②✱♣③✱t✶✱t✷✱♣♦❧②①✱♣♦❧②②✱♣♦❧②③✮ ❢❧♦❛t ♣①❬✹❪✱♣♦❧②①❬✹❪❀ ❢❧♦❛t ♣②❬✹❪✱♣♦❧②②❬✹❪❀ ❢❧♦❛t ♣③❬✹❪✱♣♦❧②③❬✹❪❀ ❢❧♦❛t ✯t✶✱✯t✷❀ ④ ❢❧♦❛t ①❞✱②❞✱③❞✱❞❢❧❀ ✐♥t ✐❀ ✴✯ ✯✴ ❙✉♠ t❤❡ ❞✐st❛♥❝❡s ❜❡t✇❡❡♥ t❤❡ ♣♦✐♥ts t♦ ✉s❡ t♦ s❝❛❧❡ t✶ ❛♥❞ t✷✳ ◆♦t❡ t❤❡ ❡①tr❡♠❡❧② t✐r❡s♦♠❡ ❝❛st✐♥❣ t❤❛t ♥❡❡❞s t♦ ❜❡ ❞♦♥❡ ❜❡❝❛✉s❡ ❛❧❧ ♦❢ t❤❡ st❛♥❞❛r❞ ❈ ♠❛t❤s ❧✐❜r❛r② ✐s ✐♥ ❞♦✉❜❧❡s✳ ❞❢❧ ❂ ✵✳✵❀ ❢♦r✭✐ ❂ ✶❀ ✐ ❁ ✹❀ ✐✰✰✮ ④ ①❞ ❂ ♣①❬✐❪ ✲ ♣①❬✐✲✶❪❀ ②❞ ❂ ♣②❬✐❪ ✲ ♣②❬✐✲✶❪❀ ③❞ ❂ ♣③❬✐❪ ✲ ♣③❬✐✲✶❪❀ ❞❢❧ ❂ ❞❢❧ ✰ ✭❢❧♦❛t✮sqrt✭✭❞♦✉❜❧❡✮ ✭①❞✯①❞ ✰ ②❞✯②❞ ✰ ③❞✯③❞✮✮❀ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✸✽ ⑥ ✐❢ ✭✐ ❂❂ ✶✮ ✯t✶ ❂ ❞❢❧❀ ✐❢ ✭✐ ❂❂ ✷✮ ✯t✷ ❂ ❞❢❧❀ ✐❢ ✭❞❢❧ ❁ ❆❈❈❨✮ ④ ❢♣r✐♥t❢✭st❞❡rr✱ ✧▲❛❣r❛♥❣❡✿ ❝✉r✈❡ t♦♦ s❤♦rt✿ ✪❢❭♥✧✱❞❢❧✮❀ r❡t✉r♥✭✶✮❀ ⑥ ✯t✶ ❂ ✯t✶✴❞❢❧❀ ✯t✷ ❂ ✯t✷✴❞❢❧❀ ✴✯ ✯✴ ❈❛❧❧ t❤❡ ♣r♦❝❡❞✉r❡ t♦ ❝♦♠♣✉t❡ t❤❡ ❝♦❡❢❢✐❝✐❡♥ts ✐♥ ❡❛❝❤ ❝♦♦r❞✐♥❛t❡✳ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣①✱♣♦❧②①✱t✶✱t✷✮✮ r❡t✉r♥✭✷✮❀ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣②✱♣♦❧②②✱t✶✱t✷✮✮ r❡t✉r♥✭✸✮❀ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣③✱♣♦❧②③✱t✶✱t✷✮✮ r❡t✉r♥✭✹✮❀ r❡t✉r♥✭✵✮❀ ⑥ ✴✯ ❧❛❣r❛♥❣❡ ✯✴ ✴✯ ✯✴ r♦❝❡❞✉r❡ t♦ ❝♦♠♣✉t❡ t❤❡ ❝♦❡❢❢✐❝✐❡♥ts ✐♥ ♦♥❡ ❞✐♠❡♥s✐♦♥ ♦❢ t❤❡ ▲❛❣r❛♥❣✐❛♥ ❝✉❜✐❝ t❤r♦✉❣❤ ❢♦✉r ♣♦✐♥ts✳ ❚❤❡ ❝♦❞❡ r❡❢❧❡❝ts t❤❡ ❛❧❣❡❜r❛✳ ✐♥t ❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣✱♣♦❧②✱t✶✱t✷✮ ❢❧♦❛t ♣❬✹❪✱♣♦❧②❬✹❪❀ ❢❧♦❛t ✯t✶✱✯t✷❀ ④ ❢❧♦❛t ❞✶✱❞✷✱❞✸✱t✶s✱t✷s✱t✶❝✱t✷❝✱❞❡♥♦♠✱tt❀ ■♥t❡r♣♦❧❛t✐♦♥ ✸✾ ❞✶ ❂ ♣❬✶❪ ✲ ♣❬✵❪❀ ❞✷ ❂ ♣❬✷❪ ✲ ♣❬✵❪❀ ❞✸ ❂ ♣❬✸❪ ✲ ♣❬✵❪❀ t✶s ❂ ✭✯t✶✮✯✭✯t✶✮❀ t✷s ❂ ✭✯t✷✮✯✭✯t✷✮❀ t✶❝ ❂ t✶s✯✭✯t✶✮❀ t✷❝ ❂ t✷s✯✭✯t✷✮❀ ❞❡♥♦♠ ❂ ✭t✷s ✲ ✭✯t✷✮✮✯t✶❝❀ ✐❢ ✭❢❛❜s✭❞❡♥♦♠✮ ❁ ❆❈❈❨✮ ④ ❢♣r✐♥t❢✭st❞❡rr✱ ✧▲❛❣r❛♥❣❡❴❝♦❡❢❢s✿ ✐♥❝r❡♠❡♥ts t♦♦ s❤♦rt✿ ✪❢❭♥✧✱ ❞❡♥♦♠✮❀ r❡t✉r♥✭✶✮❀ ⑥ tt ❂ ✭✲t✷❝ ✰ ✭✯t✷✮✮✯t✶s ✰ ✭t✷❝ ✲ t✷s✮✯✭✯t✶✮❀ ♣♦❧②❬✸❪ ❂ ✭❞✸✯✭✯t✷✮ ✲ ❞✷✮✯t✶s ✰ ✭✲❞✸✯t✷s ✰ ❞✷✮✯✭✯t✶✮ ✰ ❞✶✯t✷s ✲ ❞✶✯✭✯t✷✮✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✷❪ ❂ ✭✲❞✸✯✭✯t✷✮ ✰ ❞✷✮✯t✶❝ ✰ ✭❞✸✯t✷❝ ✲ ❞✷✮✯✭✯t✶✮ ✰ ❞✶✯t✷❝ ✰ ❞✶✯✭✯t✷✮✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✶❪ ❂ ✭❞✸✯t✷s ✲ ❞✷✮✯t✶❝ ✰ ✭✲❞✸✯t✷❝ ✰ ❞✷✮✯t✶s ✰ ❞✶✯t✷❝ ✲ ❞✶✯t✷s✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✵❪ ❂ ♣❬✵❪❀ r❡t✉r♥✭✵✮❀ ⑥ ✴✯ ❧❛❣r❛♥❣❡❴❝♦❡❢❢s ✯✴ ❚❤❡ s❡❝♦♥❞ ♣r♦❝❡❞✉r❡ ❝♦♠♣✉t❡s t❤❡ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛♥t ✐♥ t❤r❡❡ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✹✵ ❞✐♠❡♥s✐♦♥s t❤r♦✉❣❤ t✇♦ ♣♦✐♥ts ✇✐t❤ t✇♦ ❣r❛❞✐❡♥t ✈❡❝t♦rs ❛t t❤❡ ❡♥❞s✳ ❚❤❡ ♣♦✐♥ts ❛r❡ ♣✵ ❛♥❞ ♣✶✱ ❛♥❞ t❤❡ ❣r❛❞✐❡♥ts ❛r❡ ❣✵ ❛♥❞ ❣✶✳ ❚❤❡ ❝♦❡✣❝✐❡♥ts ♦❢ t❤❡ ✐♥t❡r♣♦❧❛t✐♥❣ ♣♦❧②♥♦♠✐❛❧ ❛r❡ r❡t✉r♥❡❞ ✐♥ ♣♦❧②①✱ ♣♦❧②②✱ ❛♥❞ ♣♦❧②③✳ ❚❤❡ ❛❧❣❡❜r❛ ✐♥ t❤✐s ❝❛s❡ ✐s ♠✉❝❤ s✐♠♣❧❡r t❤❛♥ t❤❛t ❢♦r ▲❛❣r❛♥❣✐❛♥ ✐♥t❡r♣♦❧❛t✐♦♥✳ ✈♦✐❞ ❤❡r♠✐t❡✭♣✵✱♣✶✱❣✵✱❣✶✱♣♦❧②①✱♣♦❧②②✱♣♦❧②③✮ ❢❧♦❛t ♣✵❬✸❪✱♣✶❬✸❪✱❣✵❬✸❪✱❣✶❬✸❪❀ ❢❧♦❛t ♣♦❧②①❬✹❪✱♣♦❧②②❬✹❪✱♣♦❧②③❬✹❪❀ ④ ✈♦✐❞ ❤❡r♠✐t❡❴❝♦❡❢❢s✭✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✵❪✱♣✶❬✵❪✱❣✵❬✵❪✱❣✶❬✵❪✱♣♦❧②①✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✶❪✱♣✶❬✶❪✱❣✵❬✶❪✱❣✶❬✶❪✱♣♦❧②②✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✷❪✱♣✶❬✷❪✱❣✵❬✷❪✱❣✶❬✷❪✱♣♦❧②③✮❀ ⑥ ✴✯ ❤❡r♠✐t❡ ✯✴ ✈♦✐❞ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵✱♣✶✱❣✵✱❣✶✱♣♦❧②✮ ❢❧♦❛t ♣✵✱♣✶✱❣✵✱❣✶❀ ❢❧♦❛t ♣♦❧②❬✹❪❀ ④ ❢❧♦❛t ❞✱❣❀ ❞ ❂ ♣✶ ✲ ♣✵ ✲ ❣✵❀ ❣ ❂ ❣✶ ✲ ❣✵❀ ♣♦❧②❬✵❪ ♣♦❧②❬✶❪ ♣♦❧②❬✷❪ ♣♦❧②❬✸❪ ❂ ❂ ❂ ❂ ♣✵❀ ❣✵❀ ✸✳✵✯❞ ✲ ❣❀ ✲✷✳✵✯❞ ✰ ❣❀ ⑥ ✴✯ ❤❡r♠✐t❡❴❝♦❡❢❢s ✯✴ Surface patches ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✶ Q = F(t, u) 0 ≤ t ≤ 1, 0 ≤ u ≤ 1✳ ✸✭✐✐✮✖❆ ♣❛r❛♠❡tr✐❝ ♣❛t❝❤ ✐♥t❡r✈❛❧ ❞❡✜♥❡❞ ♦✈❡r t❤❡ ❙✉r❢❛❝❡ ♣❛t❝❤❡s ❛r❡ ♣❛r❛♠❡tr✐❝ s✉r❢❛❝❡s ♦❢ t❤❡ ❢♦r♠ x = f1 (t, u) y = f2 (t, u) z = f3 (t, u) ✭✇❤✐❝❤ ✇❡ ❝❛♥ ❛❧s♦ ✇r✐t❡ ✇✐t❤ ✈❡❝t♦r ❝♦❡✣❝✐❡♥ts ✱ ❛s Q = F(t, u) ❛ ♣❛♣❡r✲s❛✈✐♥❣ ♠❡❛s✉r❡ t❤❛t ✇✐❧❧ ❜❡ ✐♥❝r❡❛s✐♥❣❧② ✉s❡❞ ✐♥ t❤✐s ❝❤❛♣t❡r✮✳ ❆ ♣❛t❝❤ ❝❛♥ ❜❡ ❞❡✜♥❡❞ ♦✈❡r ❛♥② ♣❛r❛♠❡tr✐❝ ♣♦rt✐♦♥ ♦❢ t❤❡ (t, u) ♣❛r❛♠❡t❡r s♣❛❝❡ ✱ ❜✉t ✐s ❡❛s✐❡st t♦ ❞❡❛❧ ✇✐t❤ ♦✈❡r t❤❡ t✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✐♥t❡r✈❛❧✿ 0≤ t ≤1 0 ≤ u ≤ 1.