
By Adrian Bowyer
Read Online or Download Introduction to Computing with Geometry PDF
Best geometry and topology books
From Geometry to Quantum Mechanics: In Honor of Hideki Omori
This quantity consists of invited expository articles via recognized mathematicians in differential geometry and mathematical physics which were prepared in get together of Hideki Omori's fresh retirement from Tokyo collage of technology and in honor of his basic contributions to those components.
Designing fair curves and surfaces: shape quality in geometric modeling and computer-aided design
This cutting-edge research of the recommendations used for designing curves and surfaces for computer-aided layout functions specializes in the main that reasonable shapes are regularly freed from unessential good points and are basic in layout. The authors outline equity mathematically, display how newly built curve and floor schemes warrantly equity, and support the person in selecting and elimination form aberrations in a floor version with no destroying the critical form features of the version.
Professor Peter Hilton is likely one of the top identified mathematicians of his new release. He has released nearly three hundred books and papers on a variety of points of topology and algebra. the current quantity is to have fun the party of his 60th birthday. It starts with a bibliography of his paintings, through studies of his contributions to topology and algebra.
Additional resources for Introduction to Computing with Geometry
Example text
X = a2 t3 + a6 t2 + a10 t + a14 . ∂u u=0 ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✸ ❆♥② ♦t❤❡r ♣❛t❝❤ ✇❤✐❝❤ ❤❛s t❤❡ s❛♠❡ ❜♦✉♥❞❛r② ❝✉r✈❡ ❛♥❞ ❞❡r✐✈❛t✐✈❡ ♣♦❧②♥♦♠✐❛❧ ✷ ❛t ✐ts ❡❞❣❡ ✇✐❧❧ ♠❛t❝❤ t❤✐s ♣❛t❝❤ ❛t ✐ts ✸ u = 0 ❡❞❣❡❀ s✐♠✐❧❛r ❝♦♥str❛✐♥ts ❛♣♣❧② ❛t t❤❡ ♦t❤❡r ❡❞❣❡s ✳ ■♥ ❛ ❝♦♠♠♦♥ ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛ ♥❡t✇♦r❦ ♦❢ s♣❛❝❡ ❝✉r✈❡s r❡❛❞②✲ ❞❡s✐❣♥❡❞✳ ❆♥♥♦②✐♥❣❧②✱ ✐t ✇♦r❦s ♦✉t t❤❛t ❜✐❝✉❜✐❝ ♣❛t❝❤❡s ❤❛✈❡ ❥✉st ♦♥❡ t♦♦ ♠❛♥② ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ✭✐♥ ❡❛❝❤ ❞✐♠❡♥s✐♦♥✮ t♦ s✉r❢❛❝❡ s✉❝❤ ❛ ♥❡t✇♦r❦ ✇✐t❤♦✉t t❤❡ s✉♣♣❧② ♦❢ ❛❞❞✐t✐♦♥❛❧ ❞❛t❛✳ ✭❍✐❣❤❡r✲❞❡❣r❡❡ ♣❛t❝❤❡s ❤❛✈❡ ❧♦ts ♦❢ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠✱ q✉❛❞r❛t✐❝s ❞♦♥✬t ❤❛✈❡ ❡♥♦✉❣❤✳✮ ■❢ t❤❡ ♣❛t❝❤❡s ❛r❡ ❜❡✐♥❣ ❞❡t❡r♠✐♥❡❞ ❜② ❛ ❍❡r♠✐t❡ t❡❝❤✲ ♥✐q✉❡✱ ♦r ❛s ❛ ❣❡♦♠❡tr✐❝ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡ ❛❧❧♦✇❛❜❧❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✐♥t❡r♥❛❧ ♣♦✐♥ts ✐♥ ❛❞❥❛❝❡♥t ♣❛t❝❤❡s ✭♦r✖❧♦♦❦✐♥❣ ❛❤❡❛❞✖t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❡rt✐❝❡s ♦❢ ❛ ❇é③✐❡r ❝♦♥tr♦❧ ♠❡s❤✮✱ t❤❡♥ t❤❡ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ❡♠❡r❣❡ ❛s s♦✲❝❛❧❧❡❞ t✇✐st ✈❡❝t♦rs ❛t t❤❡ ♣❛t❝❤ ❝♦r♥❡rs✿ ∂ 2 Q(t, u) .
X = a2 t3 + a6 t2 + a10 t + a14 . ∂u u=0 ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✸ ❆♥② ♦t❤❡r ♣❛t❝❤ ✇❤✐❝❤ ❤❛s t❤❡ s❛♠❡ ❜♦✉♥❞❛r② ❝✉r✈❡ ❛♥❞ ❞❡r✐✈❛t✐✈❡ ♣♦❧②♥♦♠✐❛❧ ✷ ❛t ✐ts ❡❞❣❡ ✇✐❧❧ ♠❛t❝❤ t❤✐s ♣❛t❝❤ ❛t ✐ts ✸ u = 0 ❡❞❣❡❀ s✐♠✐❧❛r ❝♦♥str❛✐♥ts ❛♣♣❧② ❛t t❤❡ ♦t❤❡r ❡❞❣❡s ✳ ■♥ ❛ ❝♦♠♠♦♥ ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛ ♥❡t✇♦r❦ ♦❢ s♣❛❝❡ ❝✉r✈❡s r❡❛❞②✲ ❞❡s✐❣♥❡❞✳ ❆♥♥♦②✐♥❣❧②✱ ✐t ✇♦r❦s ♦✉t t❤❛t ❜✐❝✉❜✐❝ ♣❛t❝❤❡s ❤❛✈❡ ❥✉st ♦♥❡ t♦♦ ♠❛♥② ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ✭✐♥ ❡❛❝❤ ❞✐♠❡♥s✐♦♥✮ t♦ s✉r❢❛❝❡ s✉❝❤ ❛ ♥❡t✇♦r❦ ✇✐t❤♦✉t t❤❡ s✉♣♣❧② ♦❢ ❛❞❞✐t✐♦♥❛❧ ❞❛t❛✳ ✭❍✐❣❤❡r✲❞❡❣r❡❡ ♣❛t❝❤❡s ❤❛✈❡ ❧♦ts ♦❢ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠✱ q✉❛❞r❛t✐❝s ❞♦♥✬t ❤❛✈❡ ❡♥♦✉❣❤✳✮ ■❢ t❤❡ ♣❛t❝❤❡s ❛r❡ ❜❡✐♥❣ ❞❡t❡r♠✐♥❡❞ ❜② ❛ ❍❡r♠✐t❡ t❡❝❤✲ ♥✐q✉❡✱ ♦r ❛s ❛ ❣❡♦♠❡tr✐❝ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡ ❛❧❧♦✇❛❜❧❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✐♥t❡r♥❛❧ ♣♦✐♥ts ✐♥ ❛❞❥❛❝❡♥t ♣❛t❝❤❡s ✭♦r✖❧♦♦❦✐♥❣ ❛❤❡❛❞✖t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❡rt✐❝❡s ♦❢ ❛ ❇é③✐❡r ❝♦♥tr♦❧ ♠❡s❤✮✱ t❤❡♥ t❤❡ ❡①tr❛ ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ❡♠❡r❣❡ ❛s s♦✲❝❛❧❧❡❞ t✇✐st ✈❡❝t♦rs ❛t t❤❡ ♣❛t❝❤ ❝♦r♥❡rs✿ ∂ 2 Q(t, u) .
T♦ t❤❡ ❝✉r✈❡ ♦r s✉r❢❛❝❡ ❡q✉❛t✐♦♥s✳ Hermite interpolation ■♥ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ ✇❡ ❞✐✛❡r❡♥t✐❛t❡ t❤❡ ❡q✉❛t✐♦♥s ♦❢ t❤❡ ❝✉r✈❡ ♦r s✉r❢❛❝❡✱ ❛♥❞ s♦❧✈❡ s✐♠✉❧t❛♥❡♦✉s ❡q✉❛t✐♦♥s ❢♦r ❜♦t❤ ♣♦s✐t✐♦♥ ❛♥❞ t❛♥❣❡♥t ✈❛❧✉❡ ❛t ❡❛❝❤ ♦❢ t❤❡ ♣♦✐♥ts ❜❡✐♥❣ ✐♥t❡r♣♦❧❛t❡❞✳ ❚❤✉s t✇✐❝❡ ❛s ♠❛♥② ❝♦❡✣❝✐❡♥ts ❛r❡ r❡q✉✐r❡❞ ❛s ✐♥ t❤❡ ▲❛❣r❛♥❣❡ ❝❛s❡✳ ❆ ♣❛r✲ t✐❝✉❧❛r❧② ✐♠♣♦rt❛♥t ❝❛s❡ ✐s ❝♦♥str✉❝t✐♥❣ ❛ ❝✉r✈❡ ❜❡t✇❡❡♥ t✇♦ ❡♥❞ ■♥t❡r♣♦❧❛t✐♦♥ ✸✺ ✸✭✐✮✖▲❛❣r❛♥❣❡ ❛♥❞ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥ ✉s❡❞ t♦ ❝♦♥✲ str✉❝t ❛ ♣❛r❛♠❡tr✐❝ ❝✉❜✐❝ ❝✉r✈❡ s❡❣♠❡♥t✳ ♣♦✐♥ts✱ ✇✐t❤ ❦♥♦✇♥ t❛♥❣❡♥t ✈❛❧✉❡s ❛t ❡❛❝❤✳ ❚❤❛t r❡q✉✐r❡s ❛ ❝✉r✈❡ ✇✐t❤ ❢♦✉r ❝♦❡✣❝✐❡♥ts ✐♥ ❡❛❝❤ ❡q✉❛t✐♦♥✱ ✇❤✐❝❤ ❛r❡ ❝✉❜✐❝s ❀ t❤❡r❡ ✐s ❛❧s♦ ❛♥ ❡q✉✐✈❛❧❡♥t ♣❛t❝❤ ✇❤✐❝❤ r✉♥s ❜❡t✇❡❡♥ ❢♦✉r ❝♦r♥❡r ♣♦✐♥ts✱ ❛♥❞ ❤❛s ✶✻ ❝♦❡✣❝✐❡♥ts✳ ❈✉❜✐❝s ❛r❡ ❢r❡q✉❡♥t s✐❣❤t✐♥❣s ✐♥ ❝♦♠♣✉t✐♥❣ ✇✐t❤ ❣❡♦♠❡tr②✿ s❡❡ ■❧❧✉str❛t✐♦♥ ✸✭✐✮✳ The problem of parameterization ■♥t❡r♣♦❧❛t✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✱ ❞❡❝✐❞✐♥❣ ✇❤❛t t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✲ ✉❡s ❛t ❡❛❝❤ ♣♦✐♥t ✇✐❧❧ ❜❡✖t❤❡ ✐ss✉❡ ♦❢ ♣❛r❛♠❡t❡r✐③❛t✐♦♥✖✐s ❝r✉❝✐❛❧✳ ✭❚❤❛t ✐s ❛ ♣r♦❜❧❡♠ t❤❛t ❞♦❡s ♥♦t ♦❝❝✉r ✇✐t❤ ❡①♣❧✐❝✐t✱ s✐♥❣❧❡✲✈❛❧✉❡❞✱ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s✿ ❛♥❞ s♦ ✇❡ ❝❛♥ s❡❡ ✇❤② t❤❡s❡ ❛r❡ ♣r❡❢❡rr❡❞ ❢♦r ❞r❛✇✐♥❣ ❣r❛♣❤s ❛♥❞ s♦ ♦♥✳ ❆♥❞ t❡❝❤♥✐q✉❡s ❢r♦♠ ❵❣r❛♣❤✐♥❣✬ ❛♣♣❧✐❝❛✲ t✐♦♥s ✉s✉❛❧❧② ❡①♣❧♦✐t t❤✐s ❧✐♠✐t❛t✐♦♥✱ ✇❤✐❝❤ ✐s ✇❤② ✇❡ s❤♦✉❧❞ ❜❡ ✇❛r② ♦❢ tr②✐♥❣ t♦ tr❛♥s♣❧❛♥t t❤❡♠ t♦ ♠♦r❡ ❣❡♥❡r❛❧ ❣❡♦♠❡tr✐❝ ♣r♦❜❧❡♠s✳✮ ❙♦✱ t❤❡ ♣r♦❜❧❡♠ ✇✐t❤ ✐♥t❡r♣♦❧❛t✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s ✐s t❤❛t✱ ✇❤✐❧❡ t❤❡ ♣♦s✐t✐♦♥s ❛♥❞ t❛♥❣❡♥t ❞✐r❡❝t✐♦♥s ♠❛② ❜❡ ♣r♦✈✐❞❡❞✱ ✇❡ ❤❛✈❡ t♦ ❡st✐♠❛t❡ t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s t❤❛t t❤❡ ❝✉r✈❡ ❵s❤♦✉❧❞✬ ❤❛✈❡ ✇❤❡♥ ✐t ♣❛ss❡s ❡❛❝❤ ♣♦✐♥t✱ ❛♥❞ t❤❡ ♠❛❣♥✐t✉❞❡ ❛s ✇❡❧❧ ❛s ❞✐r❡❝t✐♦♥ ♦❢ ❞❡r✐✈❛✲ t✐✈❡s✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ▲❛❣r❛♥❣❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ t❤❡ s✐♠♣❧❡st ❝❤♦✐❝❡ ✐s t♦ s♣❛❝❡ ♣❛r❛♠❡tr✐❝ ✈❛❧✉❡s ❡q✉❛❧❧② ❜❡t✇❡❡♥ ♣♦✐♥t ❞❛t❛✳ ❚❤✐s ✇♦r❦s ✐❢ t❤❡ ♣♦✐♥ts ❛r❡ t❤❡♠s❡❧✈❡s q✉✐t❡ ❡✈❡♥❧② s♣❛❝❡❞❀ ♦t❤❡r✇✐s❡ s♦♠❡✲ t❤✐♥❣ ❜❡tt❡r ✐s ♥❡❡❞❡❞✳ ❙✐♥❝❡ ♣❛r❛♠❡t❡r✐③❛t✐♦♥ ✐s r❡❧❛t❡❞ t♦ ❝✉r✈❡ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✸✻ ❧❡♥❣t❤✱ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❦♥♦✇ ✇❤❛t t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡ ✇✐❧❧ ❜❡ ❜❡t✇❡❡♥ ❡❛❝❤ ❞❛t❛ ♣♦✐♥t❀ ❜✉t t❤❛t ✐s ♣✉tt✐♥❣ t❤❡ ❝❛rt ❜❡❢♦r❡ t❤❡ ❤♦rs❡✱ ❜❡❝❛✉s❡ ✇❡ ❤❛✈❡♥✬t ❣♦t t❤❡ ❝✉r✈❡ ②❡t✳ ❖♥❡ ❝♦✉❧❞ ✐♠♣❧❡♠❡♥t ❛ t❡❝❤♥✐q✉❡ ♦❢ s✉❝❝❡ss✐✈❡ r❡✜♥❡♠❡♥t✖s❡t ✉♣ ♦♥❡ ❝✉r✈❡✱ ❣❡t t❤❡ ❝✉r✈❡ ❧❡♥❣t❤s ❢r♦♠ ✐t✱ ❛♥❞ t❤✉s ♦❜t❛✐♥ ♥❡✇ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ❞❛t❛ ♣♦✐♥ts✱ ❛♥❞ r❡♣❡❛t t❤❡ ❡①❡r❝✐s❡✖❜✉t t❤✐s r✐❣♠❛r♦❧❡ ✐s ♥♦t ✉s✉❛❧❧② ❛t✲ t❡♠♣t❡❞❀ ✐t ✇♦✉❧❞ ♣r♦❜❛❜❧② ❜❡ ❞✐✣❝✉❧t ❡✈❡♥ t♦ ♣r♦✈❡ t❤❛t ✐t ✇♦✉❧❞ ❝♦♥✈❡r❣❡✳ ❚❤❡ ✉s✉❛❧ s♦❧✉t✐♦♥ ✐s ❝❤♦r❞✲❧❡♥❣t❤ ♣❛r❛♠❡t❡r✐③❛t✐♦♥✱ ✇❤❡r❡ t❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ♣♦✐♥ts ❛r❡ ❜❛s❡❞ ♦♥ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ str❛✐❣❤t✲❧✐♥❡ s❡❣♠❡♥ts ❝♦♥♥❡❝t✐♥❣ t❤❡♠✳ ❚❤✐s ✐s ❛ ❣♦♦❞ ✇♦r❦❤♦rs❡✱ ❣✐✈✐♥❣ tr♦✉❜❧❡ ♦♥❧② ✇❤❡♥ t❤❡r❡ ❛r❡ ❛❜r✉♣t ❵❝♦r♥❡rs✬ ✐♠♣❧✐❡❞ ❜② t❤❡ ❞❛t❛✱ ❛♥❞ ❝❤❛♥❣❡s ♦❢ s♣❛❝✐♥❣✳ ❋✉rt❤❡r r❡✜♥❡♠❡♥ts ✐♥✈♦❧✈❡ t❛❦✐♥❣ t❤❡ ❛♥❣❧❡ ❜❡t✇❡❡♥ s✉❝❝❡ss✐✈❡ s♣❛♥s ✐♥t♦ ❛❝❝♦✉♥t ✭s❡❡ ❋❛r✐♥✬s ❜♦♦❦ ❈✉r✈❡s ❛♥❞ ❙✉r❢❛❝❡s ❢♦r ❈♦♠♣✉t❡r ❆✐❞❡❞ ●❡♦♠❡tr✐❝ ❉❡s✐❣♥ ❢♦r ♠♦r❡ ❞❡t❛✐❧✮✳ ❲✐t❤ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✱ s✐♠✐❧❛r ♣r♦❜❧❡♠s ♦❝❝✉r❀ ❛♥❞ ✐t ♠✉st ❜❡ r❡♠❡♠❜❡r❡❞ t❤❛t ♠❛❣♥✐t✉❞❡s ♦❢ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢♦r♠ dx dt ❡t❝✳✱ ❛r❡ r❡❧❛t❡❞ t♦ t❤❡ ❛❝t✉❛❧ s✐③❡ ♦❢ t❤❡ ❝✉r✈❡ ✐♥ t❤❡ ✉♥✐ts ♦❢ ❧❡♥❣t❤ ❜❡✐♥❣ ✉s❡❞✳ ❚❤✉s✱ ✐❢ ✇❡ s❝❛❧❡ ❛ ❝✉r✈❡ ❜② s❝❛❧✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢ ✐ts ❍❡r♠✐t❡ ❝♦❡✣❝✐❡♥ts✱ ✇❡ ♠✉st s❝❛❧❡ t❤❡ ❞❡r✐✈❛t✐✈❡s ❡①♣❧✐❝✐t❧②✳ ❚❤❛t✬s ❡❛s② ❡♥♦✉❣❤ ❢♦r ❛ s✐♠♣❧❡ s❝❛❧✐♥❣✱ ❜✉t ✇❤❛t ❛❜♦✉t ❛ s❤❡❛r tr❛♥s❢♦r♠❄ ❆❧❧ t❤❡s❡ r❡♠❛r❦s ❤❛✈❡ ❜❡❡♥ ❛❞❞r❡ss❡❞ t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ✐♥t❡r✲ ♣♦❧❛t✐♦♥✱ ❜✉t ❛❧s♦ ❛♣♣❧② t♦ ❝✉r✈❡ ✜tt✐♥❣✳ ❆❣❛✐♥✱ t❤✐s ✐s ❛ ♣r♦❝❡ss t❤❛t ✇♦r❦s ✇❡❧❧ ✇✐t❤ ❡①♣❧✐❝✐t ❣❡♦♠❡tr②✱ ❛♥❞ ❢❛✐r❧② ✇❡❧❧ ✇✐t❤ ✐♠♣❧✐❝✲ ✐ts ✭❡①❝❡♣t t❤❛t ♥♦r♠❛❧✐③❛t✐♦♥ ❝❛✉s❡s ❛ ♣r♦❜❧❡♠✮✳ ❲✐t❤ ♣❛r❛♠❡tr✐❝ ❣❡♦♠❡tr②✱ ✇❡ ❛❣❛✐♥ ❤❛✈❡ t♦ ❞❡❝✐❞❡ ✐♥ ❛❞✈❛♥❝❡ ✇❤❛t ♣❛r❛♠❡t❡r ✈❛❧✉❡ ❡❛❝❤ ♣♦✐♥t ✇✐❧❧ ❝♦rr❡s♣♦♥❞ t♦✳ ❇✉t ✐❢ t❤❡ ♣♦✐♥ts ❛r❡ ❛t ❛❧❧ ❞❡♥s❡✱ t❤✐s ✐s ❞✐✣❝✉❧t✿ ❝❤♦r❞✲❧❡♥❣t❤ ♣❛r❛♠❡t❡r✐③❛t✐♦♥ ✐s ❝❡rt❛✐♥❧② ✉s❡❧❡ss✳ ❲❡ ❝♦♥❝❧✉❞❡ t❤✐s s❡❝t✐♦♥ ✇✐t❤ ❈ ❝♦❞❡ ❢♦r ▲❛❣r❛♥❣❡ ❛♥❞ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛t✐♦♥✳ ❚❤❡ ✜rst ♣r♦❝❡❞✉r❡ ✇♦r❦s ♦✉t t❤❡ ▲❛❣r❛♥❣✐❛♥ ✐♥t❡r✲ ♣♦❧❛t✐♥❣ ❝✉❜✐❝ ♣❛r❛♠❡tr✐❝ ♣♦❧②♥♦♠✐❛❧ t❤r♦✉❣❤ ❢♦✉r ♣♦✐♥ts ✐♥ t❤r❡❡ ❞✐♠❡♥s✐♦♥s✳ ❚❤❡ ♣♦✐♥ts ✇✐❧❧ ❜❡ s✉♣♣❧✐❡❞ ✐♥ ♣①✱ ♣②✱ ❛♥❞ ♣③✳ ❚❤❡ 0✱ ❛♥❞ t❤❡ ♣❛r❛♠✲ ♣❛r❛♠❡t❡r ♦♥ t❤❡ ❝✉r✈❡ ❛t t❤❡ ✜rst ♣♦✐♥t ✇✐❧❧ ❜❡ 1❀ t❤❡ ❝♦❡✣❝✐❡♥ts ♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧ ✇✐❧❧ ❜❡ ♣♦❧②①✱ ♣♦❧②②✱ ❛♥❞ ♣♦❧②③❀ ♣♦❧②①❬✸❪ ✐s t❤❡ ❝♦❡✣❝✐❡♥t ♦❢ ❡t❡r ❛t t❤❡ ❧❛st ♣♦✐♥t r❡t✉r♥❡❞ ✐♥ ■♥t❡r♣♦❧❛t✐♦♥ t3 ✐♥ x ✸✼ ❛♥❞ s♦ ♦♥✳ ❚❤❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡s ❛t t❤❡ ♠✐❞❞❧❡ t✇♦ ♣♦✐♥ts ♦♥ t❤❡ ❝✉r✈❡ ✇✐❧❧ ❜❡ r❡t✉r♥❡❞ ✐♥ t✶ ❛♥❞ t✷✳ ★✐♥❝❧✉❞❡ ❁♠❛t❤✳❤❃ ★✐♥❝❧✉❞❡ ❁st❞✐♦✳❤❃ ✴✯ ❆❜s♦❧✉t❡ ✈❛❧✉❡ ♠❛❝r♦ ✯✴ ★❞❡❢✐♥❡ ❢❛❜s✭❛✮ ✭✭✭❛✮ ❁ ✵✳✵✮ ❄ ✭✲✭❛✮✮ ✿ ✭❛✮✮ ✴✯ ❆❧♠♦st ✵ ✲ ❛❞❥✉st ❢♦r ②♦✉r ❛♣♣❧✐❝❛t✐♦♥ ✯✴ ★❞❡❢✐♥❡ ❆❈❈❨ ✭✶✳✵❡✲✻✮ ✐♥t ❧❛❣r❛♥❣❡✭♣①✱♣②✱♣③✱t✶✱t✷✱♣♦❧②①✱♣♦❧②②✱♣♦❧②③✮ ❢❧♦❛t ♣①❬✹❪✱♣♦❧②①❬✹❪❀ ❢❧♦❛t ♣②❬✹❪✱♣♦❧②②❬✹❪❀ ❢❧♦❛t ♣③❬✹❪✱♣♦❧②③❬✹❪❀ ❢❧♦❛t ✯t✶✱✯t✷❀ ④ ❢❧♦❛t ①❞✱②❞✱③❞✱❞❢❧❀ ✐♥t ✐❀ ✴✯ ✯✴ ❙✉♠ t❤❡ ❞✐st❛♥❝❡s ❜❡t✇❡❡♥ t❤❡ ♣♦✐♥ts t♦ ✉s❡ t♦ s❝❛❧❡ t✶ ❛♥❞ t✷✳ ◆♦t❡ t❤❡ ❡①tr❡♠❡❧② t✐r❡s♦♠❡ ❝❛st✐♥❣ t❤❛t ♥❡❡❞s t♦ ❜❡ ❞♦♥❡ ❜❡❝❛✉s❡ ❛❧❧ ♦❢ t❤❡ st❛♥❞❛r❞ ❈ ♠❛t❤s ❧✐❜r❛r② ✐s ✐♥ ❞♦✉❜❧❡s✳ ❞❢❧ ❂ ✵✳✵❀ ❢♦r✭✐ ❂ ✶❀ ✐ ❁ ✹❀ ✐✰✰✮ ④ ①❞ ❂ ♣①❬✐❪ ✲ ♣①❬✐✲✶❪❀ ②❞ ❂ ♣②❬✐❪ ✲ ♣②❬✐✲✶❪❀ ③❞ ❂ ♣③❬✐❪ ✲ ♣③❬✐✲✶❪❀ ❞❢❧ ❂ ❞❢❧ ✰ ✭❢❧♦❛t✮sqrt✭✭❞♦✉❜❧❡✮ ✭①❞✯①❞ ✰ ②❞✯②❞ ✰ ③❞✯③❞✮✮❀ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✸✽ ⑥ ✐❢ ✭✐ ❂❂ ✶✮ ✯t✶ ❂ ❞❢❧❀ ✐❢ ✭✐ ❂❂ ✷✮ ✯t✷ ❂ ❞❢❧❀ ✐❢ ✭❞❢❧ ❁ ❆❈❈❨✮ ④ ❢♣r✐♥t❢✭st❞❡rr✱ ✧▲❛❣r❛♥❣❡✿ ❝✉r✈❡ t♦♦ s❤♦rt✿ ✪❢❭♥✧✱❞❢❧✮❀ r❡t✉r♥✭✶✮❀ ⑥ ✯t✶ ❂ ✯t✶✴❞❢❧❀ ✯t✷ ❂ ✯t✷✴❞❢❧❀ ✴✯ ✯✴ ❈❛❧❧ t❤❡ ♣r♦❝❡❞✉r❡ t♦ ❝♦♠♣✉t❡ t❤❡ ❝♦❡❢❢✐❝✐❡♥ts ✐♥ ❡❛❝❤ ❝♦♦r❞✐♥❛t❡✳ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣①✱♣♦❧②①✱t✶✱t✷✮✮ r❡t✉r♥✭✷✮❀ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣②✱♣♦❧②②✱t✶✱t✷✮✮ r❡t✉r♥✭✸✮❀ ✐❢✭❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣③✱♣♦❧②③✱t✶✱t✷✮✮ r❡t✉r♥✭✹✮❀ r❡t✉r♥✭✵✮❀ ⑥ ✴✯ ❧❛❣r❛♥❣❡ ✯✴ ✴✯ ✯✴ r♦❝❡❞✉r❡ t♦ ❝♦♠♣✉t❡ t❤❡ ❝♦❡❢❢✐❝✐❡♥ts ✐♥ ♦♥❡ ❞✐♠❡♥s✐♦♥ ♦❢ t❤❡ ▲❛❣r❛♥❣✐❛♥ ❝✉❜✐❝ t❤r♦✉❣❤ ❢♦✉r ♣♦✐♥ts✳ ❚❤❡ ❝♦❞❡ r❡❢❧❡❝ts t❤❡ ❛❧❣❡❜r❛✳ ✐♥t ❧❛❣r❛♥❣❡❴❝♦❡❢❢s✭♣✱♣♦❧②✱t✶✱t✷✮ ❢❧♦❛t ♣❬✹❪✱♣♦❧②❬✹❪❀ ❢❧♦❛t ✯t✶✱✯t✷❀ ④ ❢❧♦❛t ❞✶✱❞✷✱❞✸✱t✶s✱t✷s✱t✶❝✱t✷❝✱❞❡♥♦♠✱tt❀ ■♥t❡r♣♦❧❛t✐♦♥ ✸✾ ❞✶ ❂ ♣❬✶❪ ✲ ♣❬✵❪❀ ❞✷ ❂ ♣❬✷❪ ✲ ♣❬✵❪❀ ❞✸ ❂ ♣❬✸❪ ✲ ♣❬✵❪❀ t✶s ❂ ✭✯t✶✮✯✭✯t✶✮❀ t✷s ❂ ✭✯t✷✮✯✭✯t✷✮❀ t✶❝ ❂ t✶s✯✭✯t✶✮❀ t✷❝ ❂ t✷s✯✭✯t✷✮❀ ❞❡♥♦♠ ❂ ✭t✷s ✲ ✭✯t✷✮✮✯t✶❝❀ ✐❢ ✭❢❛❜s✭❞❡♥♦♠✮ ❁ ❆❈❈❨✮ ④ ❢♣r✐♥t❢✭st❞❡rr✱ ✧▲❛❣r❛♥❣❡❴❝♦❡❢❢s✿ ✐♥❝r❡♠❡♥ts t♦♦ s❤♦rt✿ ✪❢❭♥✧✱ ❞❡♥♦♠✮❀ r❡t✉r♥✭✶✮❀ ⑥ tt ❂ ✭✲t✷❝ ✰ ✭✯t✷✮✮✯t✶s ✰ ✭t✷❝ ✲ t✷s✮✯✭✯t✶✮❀ ♣♦❧②❬✸❪ ❂ ✭❞✸✯✭✯t✷✮ ✲ ❞✷✮✯t✶s ✰ ✭✲❞✸✯t✷s ✰ ❞✷✮✯✭✯t✶✮ ✰ ❞✶✯t✷s ✲ ❞✶✯✭✯t✷✮✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✷❪ ❂ ✭✲❞✸✯✭✯t✷✮ ✰ ❞✷✮✯t✶❝ ✰ ✭❞✸✯t✷❝ ✲ ❞✷✮✯✭✯t✶✮ ✰ ❞✶✯t✷❝ ✰ ❞✶✯✭✯t✷✮✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✶❪ ❂ ✭❞✸✯t✷s ✲ ❞✷✮✯t✶❝ ✰ ✭✲❞✸✯t✷❝ ✰ ❞✷✮✯t✶s ✰ ❞✶✯t✷❝ ✲ ❞✶✯t✷s✴❞❡♥♦♠ ✰ tt❀ ♣♦❧②❬✵❪ ❂ ♣❬✵❪❀ r❡t✉r♥✭✵✮❀ ⑥ ✴✯ ❧❛❣r❛♥❣❡❴❝♦❡❢❢s ✯✴ ❚❤❡ s❡❝♦♥❞ ♣r♦❝❡❞✉r❡ ❝♦♠♣✉t❡s t❤❡ ❍❡r♠✐t❡ ✐♥t❡r♣♦❧❛♥t ✐♥ t❤r❡❡ ❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s ✹✵ ❞✐♠❡♥s✐♦♥s t❤r♦✉❣❤ t✇♦ ♣♦✐♥ts ✇✐t❤ t✇♦ ❣r❛❞✐❡♥t ✈❡❝t♦rs ❛t t❤❡ ❡♥❞s✳ ❚❤❡ ♣♦✐♥ts ❛r❡ ♣✵ ❛♥❞ ♣✶✱ ❛♥❞ t❤❡ ❣r❛❞✐❡♥ts ❛r❡ ❣✵ ❛♥❞ ❣✶✳ ❚❤❡ ❝♦❡✣❝✐❡♥ts ♦❢ t❤❡ ✐♥t❡r♣♦❧❛t✐♥❣ ♣♦❧②♥♦♠✐❛❧ ❛r❡ r❡t✉r♥❡❞ ✐♥ ♣♦❧②①✱ ♣♦❧②②✱ ❛♥❞ ♣♦❧②③✳ ❚❤❡ ❛❧❣❡❜r❛ ✐♥ t❤✐s ❝❛s❡ ✐s ♠✉❝❤ s✐♠♣❧❡r t❤❛♥ t❤❛t ❢♦r ▲❛❣r❛♥❣✐❛♥ ✐♥t❡r♣♦❧❛t✐♦♥✳ ✈♦✐❞ ❤❡r♠✐t❡✭♣✵✱♣✶✱❣✵✱❣✶✱♣♦❧②①✱♣♦❧②②✱♣♦❧②③✮ ❢❧♦❛t ♣✵❬✸❪✱♣✶❬✸❪✱❣✵❬✸❪✱❣✶❬✸❪❀ ❢❧♦❛t ♣♦❧②①❬✹❪✱♣♦❧②②❬✹❪✱♣♦❧②③❬✹❪❀ ④ ✈♦✐❞ ❤❡r♠✐t❡❴❝♦❡❢❢s✭✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✵❪✱♣✶❬✵❪✱❣✵❬✵❪✱❣✶❬✵❪✱♣♦❧②①✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✶❪✱♣✶❬✶❪✱❣✵❬✶❪✱❣✶❬✶❪✱♣♦❧②②✮❀ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵❬✷❪✱♣✶❬✷❪✱❣✵❬✷❪✱❣✶❬✷❪✱♣♦❧②③✮❀ ⑥ ✴✯ ❤❡r♠✐t❡ ✯✴ ✈♦✐❞ ❤❡r♠✐t❡❴❝♦❡❢❢s✭♣✵✱♣✶✱❣✵✱❣✶✱♣♦❧②✮ ❢❧♦❛t ♣✵✱♣✶✱❣✵✱❣✶❀ ❢❧♦❛t ♣♦❧②❬✹❪❀ ④ ❢❧♦❛t ❞✱❣❀ ❞ ❂ ♣✶ ✲ ♣✵ ✲ ❣✵❀ ❣ ❂ ❣✶ ✲ ❣✵❀ ♣♦❧②❬✵❪ ♣♦❧②❬✶❪ ♣♦❧②❬✷❪ ♣♦❧②❬✸❪ ❂ ❂ ❂ ❂ ♣✵❀ ❣✵❀ ✸✳✵✯❞ ✲ ❣❀ ✲✷✳✵✯❞ ✰ ❣❀ ⑥ ✴✯ ❤❡r♠✐t❡❴❝♦❡❢❢s ✯✴ Surface patches ❙✉r❢❛❝❡ ♣❛t❝❤❡s ✹✶ Q = F(t, u) 0 ≤ t ≤ 1, 0 ≤ u ≤ 1✳ ✸✭✐✐✮✖❆ ♣❛r❛♠❡tr✐❝ ♣❛t❝❤ ✐♥t❡r✈❛❧ ❞❡✜♥❡❞ ♦✈❡r t❤❡ ❙✉r❢❛❝❡ ♣❛t❝❤❡s ❛r❡ ♣❛r❛♠❡tr✐❝ s✉r❢❛❝❡s ♦❢ t❤❡ ❢♦r♠ x = f1 (t, u) y = f2 (t, u) z = f3 (t, u) ✭✇❤✐❝❤ ✇❡ ❝❛♥ ❛❧s♦ ✇r✐t❡ ✇✐t❤ ✈❡❝t♦r ❝♦❡✣❝✐❡♥ts ✱ ❛s Q = F(t, u) ❛ ♣❛♣❡r✲s❛✈✐♥❣ ♠❡❛s✉r❡ t❤❛t ✇✐❧❧ ❜❡ ✐♥❝r❡❛s✐♥❣❧② ✉s❡❞ ✐♥ t❤✐s ❝❤❛♣t❡r✮✳ ❆ ♣❛t❝❤ ❝❛♥ ❜❡ ❞❡✜♥❡❞ ♦✈❡r ❛♥② ♣❛r❛♠❡tr✐❝ ♣♦rt✐♦♥ ♦❢ t❤❡ (t, u) ♣❛r❛♠❡t❡r s♣❛❝❡ ✱ ❜✉t ✐s ❡❛s✐❡st t♦ ❞❡❛❧ ✇✐t❤ ♦✈❡r t❤❡ t✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✐♥t❡r✈❛❧✿ 0≤ t ≤1 0 ≤ u ≤ 1.