Géométrie. Classe de Mathématiques (Programmes de 1945) by Lebossé C., Hémery C.

By Lebossé C., Hémery C.

Réimpression par les éditions Jacques Gabay d’un livre initialement publié par Fernand Nathan en 1961. Conforme au programme du 27 juin 1945.

Table des matières :

Première partie. — Éléments orientés

Leçon 1. — Vecteurs et coordonnées
    Vecteurs
    Sommes vectorielles
    Projections d’un vecteur
    Coordonnées

Leçon 2. — Angles orientés dans le plan
    Angles orientés dans le plan
    Angle de deux droites dans le plan
    Angles inscrits

Leçon three. — Éléments orientés dans l’espace. — Produit scalaire. — family métriques dans le triangle

Leçon four. — Trièdres
    Trièdres
    Relations entre les faces d’un trièdre
    Trièdres supplémentaires
    Cas d’égalité des trièdres

Deuxième partie. — Transformations

Leçon five. — modifications. — Déplacements plans
    Transformations ponctuelles
    Déplacements plans
    Translation plane
    Rotation plane

Leçon 6. — Symétrie-droite dans le plan. — purposes des déplacements et symétries

Leçon 7. — Déplacements dans l’espace
    Déplacements dans l’espace
    Translation dans l’espace
    Rotation dans l’espace

Leçon eight. — Symétries dans l’espace. — Comparaison. — Éléments de symétrie d’une figure

Leçon nine. — Homothétie
    Homothétie
    Applications de l’homothétie

Leçon 10. — Similitude dans le plan et dans l’espace

Leçon eleven. — department et faisceau harmoniques
    Division harmonique
    Faisceau harmonique
    Polaire d’un element par rapport à deux droites

Leçon 12. — Puissance par rapport à un cercle et à une sphère

Leçon thirteen. — Cercles orthogonaux. — Faisceaux de cercles. — Sphères orthogonales

Leçon 14. — Polarité par rapport à un cercle et à une sphère

Leçon 15. — Inversion dans le plan et dans l’espace

Leçon sixteen. — functions. — Projection stéréographique

Troisième partie. — Coniques

Introduction

Leçon 17. — Ellipse. — Tangentes à l’ellipse

Leçon 18. — Équation de l’ellipse. — Ellipse projection d’un cercle

Leçon 19. — Hyperbole. — Tangentes à l’hyperbole

Leçon 20. — Équation de l’hyperbole. — Propriétés kinfolk aux asymptotes
    Équation de l’hyperbole
    Propriétés family members aux asymptotes
    Hyperbole équilatère

Leçon 21. — Parabole. — Tangentes à los angeles parabole. — Équation de l. a. parabole

Leçon 22. — Foyers et directrices

Leçon 23. — Propriétés communes
    Lieux géométriques
    Propriétés des tangentes
    Propriétés des normales

Leçon 24. — Sections planes d’un cône ou cylindre de révolution

Show description

Read Online or Download Géométrie. Classe de Mathématiques (Programmes de 1945) PDF

Best geometry and topology books

From Geometry to Quantum Mechanics: In Honor of Hideki Omori

This quantity consists of invited expository articles through recognized mathematicians in differential geometry and mathematical physics which have been prepared in social gathering of Hideki Omori's fresh retirement from Tokyo collage of technological know-how and in honor of his basic contributions to those components.

Designing fair curves and surfaces: shape quality in geometric modeling and computer-aided design

This cutting-edge learn of the options used for designing curves and surfaces for computer-aided layout purposes specializes in the primary that reasonable shapes are constantly freed from unessential gains and are easy in layout. The authors outline equity mathematically, exhibit how newly constructed curve and floor schemes warrantly equity, and help the person in deciding upon and elimination form aberrations in a floor version with no destroying the primary form features of the version.

Topological Topics: Articles on Algebra and Topology Presented to Professor P J Hilton in Celebration of his Sixtieth Birthday

Professor Peter Hilton is without doubt one of the top recognized mathematicians of his iteration. He has released nearly three hundred books and papers on a number of elements of topology and algebra. the current quantity is to have a good time the social gathering of his 60th birthday. It starts with a bibliography of his paintings, by means of reports of his contributions to topology and algebra.

Additional info for Géométrie. Classe de Mathématiques (Programmes de 1945)

Sample text

VZ and XY are the opposite sides of a rectangle. 2. The opposite sides of a rectangle are congruent. Conclusion: VZ =' XY zvl ------~ In Exercises 23-28, write the correct conclusion. 23. 1. The opposite sides of a parallelogram are parallel. 2. VX and ZY are opposite sides of parallelogram VXYZ. Conclusion: _1_ 24. 1. Two intersecting lines determine exactly one plane. 2. Lines p and q intersect. Conclusion: _1_ 25. 1. Two coplanar lines either intersect or are parallel. 2. Coplanar lines p and q do not intersect.

20. It measures less than 90. 21. Coplanar points are in the same plane. 22. A triangle is when you have three angles and three sides. 23. Congruent segments are segments that have the same measure and are equal. 24. An angle is a geometric figure. C I 25. Rewrite the statements in Exercises 19-24 so that they are acceptable definitions. PV~~&B-----------Five blocks are placed in a row as shown below. Each block is covered with paper showing 6 pictures arranged the same way on each block. If a paper cover is removed and flattened out as shown below on the right.

How many Jines can you draw through 6 points? ) Segments and Angles 45 onstructions Constructing a Segment Congruent to a Given Segment /\ In constructions. a straightedge is used to draw lines, segments, or rays A straightedge looks like a ruler without measurement marks A compass is used in constructions to draw circles or arcs of circles. A circle is the set of all points in a plane that are at a given distance from a given point in the plane. The given point is the center of the circle and the given distance is the radius.

Download PDF sample

Rated 4.44 of 5 – based on 5 votes